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~IATIVE INSTABILITY OF STRATIFIED SHEAR FLOWS 
IN THE DRAZIN MODEL* 

U.N. MAKOV and U.A.STRPANIANTS 

The results of analytical stability calculations of an ideal liquid 
stratified shear flow described by the Drazin model /l/ are presented. 
It is shownthatthe previously found solution /l/, which gives the 
boundaries of the region of stability in a plane with parameters aJ, 
where OL is a dimensionless wave number and Y is the minimum value of the 
Richardson number are generally incomplete. The presence of constant 
stratification in the whole flow region enables free internal waves to 
exist which, emanating from the shear layer, give rise to additional 
radiative instability, previously examined in /2/ for a flow with 
tangential velocity discontinuity. The influence of the outer boundaries 
on the stability of the shear flow is clarified and the analytical results 
obtained are compared with numerical calculations carried out in /3, 4/ 
for certain models with smooth velocity and density profiles. 

It was established in /3, 4/ that all modes involved in the shear flow can be divided 
into two classes. These are (in the terminology of /4/) A modes , exponentially decaying along 
the vertical z coordinate in both directions of the shear layer, and B modes which have a 
running wave structure along z (radiating from the shear layer). Roth types of mode can give 
rise to instability with increments comparable in value, but over various ranges of wave 
number, and radiating instabilities linked to B modes are usually characterized by long wave- 
lengths. In the Drazin model examined below all possible regions of instability in the aJ 
plane,whethercaused by A or B modes, are determined. The usual approach was used for this, 
comprising linearized hydrodynamics equations reducing to one singular Taylor-Goldstein 
equation (see below] which, together with the boundary conditions, form a boundary value 
problem in the eigenvalues of the harmonic-perturbation phase velocity c. Theneutral stability 
curve was found from this problem which, in the plane with parameters aJ, divides regions 
with complex values demonstrating the instability of the flow (in view of the selfconjugacy 
of the boundary value problem, complex values of c may only appear as conjugate pairs in which 
one value corresponds to increasing and the other to decreasing perturbation), and regions 
with possible real values of c, corresponding to neutrally stable flows. 

The analyticallyunst~lesolutions~ound in the form of B modes , caused by stratification, 
can be explained /5/ by the concept of a negative energy wave, which is typical for an un- 
balanced system; shear flow is one example of this. The gradual decrease in the negative 
energy of such waves due to the generation and propagation (radiation) of internal waves in a 
stratified liquid (or due to other energy selective factors such as viscous dissipation) leads 
to an increase in the absolute value of the energy, and therefore also of the wave amplitude, 
i.e. to instability. 

1. Consider the plane-parallel motion of an ideal luquid along the horizontal r axis 
with velocity and density profiles in the form /l/ 

U (z) = U0 th (z/d); p (z) = pOe-aZ (1.1) 

The vertical perturbation component of the velocity w(x,z,t)= W(z;)eiW*-ct) described by 
the Taylor-Goldstein (TG) equation in the Boussinesq approximation /6-8/ 

W”(z) - [k? + -g& Na 

--jCxF I W(z)=0 

where Na = -gp'(z)p-"(2) is the square of the buoyancy frequency (g is the acceleration due 
to gravity). 

We will seek solutions of this equation with real values of k and c, lying on the neutral 
stability curve which divides the stability and instability regions in a plane with parameters 
a = kd (the dimensionless wave number) and J = min]~(~)/~(z)]z = &@JU,,z (the minimum value 
of the Richardson number). Such solutions are conventionally called singular neutral modes. 
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In addition, let us take the boundary conditions along s to be symmetrical (their specific 
form will be discussed below) which, in parallel with the symmetry along s of Eq.(1.2), allows 
the eigenvalue c to be set equal to zero for the required singular neutral mode (see /l/). 
Tftis fundamental assumption c = 0 enables us to investigate the solutions of Eq.fl.2) analyti- 
cally. As will become evident later, however , the phase velocity can be non-zero, even in 
a symmetrical problem, for radiative modes. 

We will write Eq.Cl.2) in dimensionless form, assuming c = 0. by introducingthetypical 
scale of velocity U, and length d and using the function u (z,) = th (s*) as an independent 
variable. 

where f (u) = f (th z*) = W(z), z* = zld is the dimensionless vertical coordinate (henceforth we 
will omit the asterisk). 

The equation derived possesses four regular singular points (where u = O,kl,~) and 
belongs to the Fuchs-type equation /9/. Let us examine the behaviour of the solution in the 
neighbourhood of the singular points. 

Retaining the principal terms in (1.3), as m-+-O we obtain the solution in the form 

(1.4) 

where c,,, axe arbitrary constants. This solution approaches zero as u-+0, i.e. also as 
z-to. 

Close to the singular points u=fl (i.e. as z-+&m) Eq.tl.3) presents two different 
types of solution depending on the sign of the difference J--z. If J < aa, then 

f - (1 + u)“. A = ‘ial/ct2 - J 

is a physically understandable solution as u+ti. 
The second linearly independent solution f- (1 &u)-’ increases without limit as u-+&t. 
The asymptotic solution (1.5) tends monotonically to zero as ~++l(z++-co). This 

precise case was examined in 111, where the expression for the neutral curve of the mode A: 
J= a$(1 -a"), localized along x was found. For J> aa I however, the asymptotic solution 
(1.3) as u-+.&I has a different form: 

f = ca co9 (Y In q) + c4 sin (Y In q), 

v = l/%\lJ -aa, q = I- /u 1 

(1.6) 

This solution does not vanish as u-+-&l (z-+&cQ) but has an oscillating character 
which corresponds to "radiative" boundary conditions, i.e. it describes the superposition of 
two modes travelling to the shear layer and from it to z = +co. The parabola J.= aa serves 
as the boundary in the aJ plane,which divides the A modes localized along z and the 
radiative B modes. The neutral stability curve, found in /l/ lies entirely under this parabola 
(see the figure). 

b 

Let us examine the region under the parabola, i.e. J>a2. We convert Eq.(l.L(f, separ- 
ting out in explicit form the behaviour of the unknown function (see (1.41, (1.6)) in the 
neighbourhood of the singular points 



f (u) = E’h+W (1 - E)‘“@ (E), E = ~2, y = ‘lai/l - 4J Q.7) 

The new functionQ,(Qsatisfiestheequation 

Id=@ afa+ 1 +u - (2+y+ 2iv) 5 d@ El1 - 4) d;- 

(iv+++~)(iv++&&=O 
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which differs somewhat from the hypergeometric equation /lo/ usually examined, in that it 
contains the imaginary parameter iv. The number of singular pointsin Eq.tl.8) was reduced 
to three (s = 0, 1, 00)~ but a branching point 5 = O.appeared. 

We make a branch cut along the section [O, il. Its right edge corresponds to a change 
u from 0 to 1 and its left edge to a change in II from 0 to -1. At the transition from the 
right to the left edge, the solution of Eq.tl.8) will have a certain phase jump. 

If y#O, the required solution has the form /9, lo/ 

@c(u)=F(iv++++, iv ++--&, y+i,ua) 

@,D(u)=u-:qF(iv- + + +, iv- +- f, -y+ I#) 

Here F (a, b, c, u”) is the hypergeometric function containing complex parameters. The 
chosen form of the solution (1.9) is convenient for examining the asymptotic form close to 
u=o (at which the upper index @1,X" is indicated), since, as u-+0 we have F(a,b,c, 
22) + 1. TO investigate the solution of Eq.Cl.8) as E(=$)+l, it is convenient to write 
these solutions in terms of other functions 

q’ (u) = F (iv + -$- + --g , iv + f -+ ,2iv + 1, 1-Q) 61.10) 

&'@)=(I - zP)-~~~,F(- iv + + - +, - iv + + + 

5 
-zF -22iVf1, I- 4 

which are connected with the functions CD,,," by the linear relationship /lo/ 

(1.11) 

Al* = Ali (Y) = r (1 + y) r (* 2iv) [r (+ + iv - +) x 

r(+_th++)j-’ 
A,* = A,* (- y) 

We note that, as follows from the explicit form of the function @,,"(u),for a transition 
though zero from positive to negative values of u,. an additional factor ezi*J appears in the 
function i.e. the phase changes in a jump by 2ny. In order to take this into account in the 
second relation (1.11) the coefficients A,* must be multiplied by etiny inthezegion of 
negative values of u (-I< u< 0). Thus, having the solution of the hypergeometric Eq.fl.8) 
for @ and substituting it into (1.7), we obtain 

f(u) = u’/~+Y (1 - u2)iv [c,@,” (u) + c@~O (u)] = dh+y (1 - up)iv x 

[(GA,- + c&)@,'(u) + (CIA,+ + c&+)@,,'(u)], O<u< 1 

[(c,A,- + c2A,-e2inV) 0,’ (u) + (cIA,+ + c~A,+.@~Y) @,I (u)], - 1 <u < 0 

(1.12) 

Solution (1.12) after changing to the initial variables may be considered as the accurate 
solution of the TG Eq.(1.2). We recall that this solution holds when J> a2 and, unlike 
the solution previously obtained /l/, it does not decrease but oscillates as z+_tw. Indeed, 
from (1.12) it follows that 

W (z) = f (th z) - (qA,- + czA,-) eziv(lnz-z) + 
(QA,+ + CZA2+)e-zi~(lnn-z) . z-Do 

w (4 - ie-‘nY [(clA,- + ,g,-e-2inv) eZiv(lnz+z) + 

(cl/l,+ + ca.&+e’in~) e-eiv(In2+q, z --, _ m 

(1.13) 
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2. Cn the basis of the analytical solutions of the TG equations obtained in sect.1, let 
determine the influence of solid boundaries in the model under examination /l/ on the 

formation and transformation of new regions of instability in the aJ plane, corresponding 
to radiative B modes. Let us assume that the flow is enclosed between solid impermeable plane 
boundaries _ z -+h. This corresponds to the zero boundary condition f Iz.._+,t == 0. We consider 
the dimensionless distance between the boundaries to be fairly large &>>I), for the asymptotic 
solution (1.13), to which zero boundary conditions are applied, to be sufficiently accurate in 
the neighbourhood of z = 2-h. This leads to a set of two uniform equations with respect to 
Cl, CE. from the condition for the non-trivial solvability of which 

_41-<4Z-e';"011"-h) _& A1+l~.,+e-l"(l""-"~ + Al-A,+ + A1+n,- .~ O (2.1) 

for a fixed value of J, we can find the permitted values of a for which, by our assumption, 
c = 0. 

Expressions (1.11) for the coefficients A,- and Al+ (in a similar manner for A; 
and A,-) differ only in the sign of the imaginary part of the arguments of the r-function. 
Hence it follows that /ll/ A,- and Al' (in the same way as A,- and A,‘) have identical 
moduli and opposite phases. Therefore all products A,+Azf occurring in (2.1) have identical 
moduli. Thus (2.1) can be reduced to a simple trigonometric equation 

cos Iv, $ qZ + 4~ (In 2 - h)l + cos(rpI - cpz) = 0 

with respect to the phases %,z = (P~,z (a, J) of the complex coefficients A,,. 
This equation is satisfied for 

(pj + 2v (In 2 - h) = x/2 + TZZT, n : 0, $1, +-2, . . (2.2) 

where either j = 1 or j=2. Relations (2.2) determine the upper branch ~(j ==I) and the 
lower branch (j = 2) of the neutral stability curve in the crJ plane. It turns out that for 
a svecified value of the dimensionless distance 2h between the boundaries, relations (2.2) 
are-only solvable for a finite number of values of n which, in turn, give a finite number of 
instability zones, each of which correspond to a specific B mode. 

The calculations carried out have demonstrated that the number m of instability zones 
increases as h increases as given by m z 0,16h. The boundaries of the instability zone are 
shown in the figure for h = 10 (a) and h = 20 (b) and fully coincide with those derived /3/ 
by the direct numerical method of solving TC Eqs.(l.2) with corresponding boundary conditions. 
The curve J = a' is shown by the broken line , which divides the regions in which exponential 
A modes (the horizontal dashed line) and radiative B modes (the vertical dashed line) exist. 
The level J = '1, is marked by the dash-dot line above which, in accordance with the Miles- 
Howard theorem /7', 8/ instability is not possible. 

Let us make two observations about the characteristic features of B type instability 
zones. 

Firstly,ascalculationsbyrelation (2.2) show and as is evident from the figure, there 
are zones (B,,E,) removed from the common boundary J= ~9 for each radiative region and zones 
pressed against this boundary (for the case depicted in the figure with h= IO,20 there is 
only one such zone El). The remote zones B, and B, typically have an upper and lower boundary 
which move away upwards and close up exactly at the level J=V,. This is clear from the two 
determined boundaries of the zones for Eqs.(2.2) which coincide where J=llp(y= o), i.e. they 
share a common point in the aJ plane since the complex coefficients A,- and A,- coincide 
under these conditions and, of course, the phases 'p, and (p2 also. For the compressed zone E, 
its upper boundary does not manage to reach the level J---V1 and intersects the parabola 
J = a2 (v = 0), which obeys Eq.(2.2), i.e. it forms the lower boundary for the instability zones 
pressed against it. 

As h increases, so the number of instability zones increases, but they become narrower, 
shift to the right and come up against the parabola J = aa (this tendency can be seen in the 
figure). Their maximum shifts downwards along the parabola J= a2. Calculations showthat, 
for h-_, 100, all zones run adjacent to the parabola and their maxima are significantly less 
then 'I,. Since they are immediately adjacent to the Drazin zone A, in the region of small a 
and J, these zones transform zone A in this region of parameters. In the limit as h-m all 
instability zones Bi gather together at point cc= J= 0 (see on these lines Sect.4) and an 
unperturbed boundary of zone &remains inthe plane, first calculated by Drazin /I/. All the 

special features noted are confirmed by numerical solutions of the lG equation /3, 4/. 
secondly, we note that the presence of a discreet spectrum of modes (Ej, A$, is connected 

with the solid boundaries which form a waveguide for internal waves on the shear flow. In- 
stability regions under the curve J = a2 correspond to exponentially decaying A modes and 
instability regions above this curve are related to oscillating B modes. The division of modes 
into exponential and oscillating, however, only makes sense for large distances between the 

boundaries @>I). If h G 1, then a common region of instability is formed, which was obtained 
numerically /3/ (see also /7/j. 



625 

3. NOW let us examineasemi-enclosed model, containing a solid boundary for z = -h 
and unlimited in height (a model of the earth's atmosphere with a non-uniform wind). once 
again let us examine the case h> 1 using the asymptotic forms (1.13). The boundary con- 
dition for z = -h remains as before, but as z--t 00 we apply a radiation condition, i.e. 
we consider that the solution takes the form of a wave travelling from the shear layer (the 
wave is taken to be travelling towards z = 00 if its group velocity is in the direction of 
increasing z). This condition means that one of the coefficients in (l.l3),corresponding to 
the wave which arrives from infinity, should be net equal to zero. Thus we derive a uniform 
set of equations in c1 and cl, on equating the determinant of which to zero leads to the 
relation 

Zisin(ny) A,-A;e irry= (A,+A,- _ A1-Aa+eYinV)e-iiYclne-h) (3.1) 

Taking into account the equality of the moduli and the opposite signs of the phase of the 
coefficients A,- and A,+ and also A,- and A,+, we conclude that relation (3.1) holds when 
the equality 

'pl + (Pi + 4~ (In 2 -h) - 2kn = 0 (3.2) 

is simultaneously satisfied, which guarantees the equality of the arguments (to within &ch-) 
of the two terms in Eq.(3.1) and one from the equalities 

91 - ‘c.1 + n (2m + 1) = 0 (3.3) 

'p1- (P3 + 2n (n + y) = 0 

which give equality of the moduli of the terms in the same initial Eq.(3.1). In relations 
(3.2) and (3.3), k,m,n are integers. 

The general solution of Eqs.(3.2) and (3.3) for fixed k,m, I) and h defines two points 
in all in the aJ plane. By varying k, m,n for fixed h it is possible to obtain several 
pairs of points to which various eigenmodes apply. 

Thus, for a semi-enclosed model, instead of a neutral stability curve with Re c = 0 
in the aJ plane only separate points are obtained. This is explained by the fact that in 
the given situation, due to the asymmetry of the model, the value of Ret along the neutral 
curve does not remain constant or equal to zero but is always changing. If the axis Ret is 
introduced above the plane aJ the neutral instability curve will lie in the three-dimensional 
space already formed and its intersection with the aJ plane will.define two points correspond- 
ing to solutions (3.2) and (3.3), which are only valid when Ret= 0. These results agree 
well with direct numerical calculations /4/. 

4. For a model unbounded in both directions the general solution (1.12) of the TG 

equation must satisfy the radiation conditions as Z-++oO. This signifies that its 
asymptotic representation (1.13) must only contain those exponents which correspond to waves 
travelling along z from the shear layer. By equating the coefficients of the "spere" exponents 
to zero, we obtain a uniform set of equations in ~1. ~2 and by equating to zero the determinant 
of this we get 

A1+A,+ sin ny = 0 (4.1) 

From the form of the coefficients A,,,; it follows that Eq.(4.1) can be satisfied where 
y#O (i.e. J# Ii,) only in the case, where a = J = 0, which agrees with the limit 
transition discussed in Sect.2. This result does not mean, however, that in the unbounded 
model only the A,mode is growing: other modes can also be growing (see, as an example, /12/), 
but for these Rec#O and, therefore, the analytical approach developed is inapplicable to 
them. 

5. The analysis of the Drazin model for three different cases (with two outer boundaries, 
semi-enclosed and unbounded) demonstrates that in shear flow , together with exponentially 
decaying modes localized in the neighbourhood of the shear layer, radiative modes may also 
exist if the liquid is stratified a long way from the shear layer. This conclusion is supported 
by the results obtained in /13, 14/, in which a Holmbow model was studied with the same 
velocity profile as in the case of the Drazin model, but with a different density profile 
representing a smooth transition between two costant density values for z = + 00. As these 
papers show, there are no other modes in the Holmbow model apart from exponentially decaying 
ones, since the liquid is uniform at infinity. 

In cases where there is stratification away from the shear layer, it is essential to 
consider radiative modes, for this will lead to the appearance of additional instability 
zones, whose number and relative positions depend on the presence of one or both outer 
boundaries and aiso on the distance between these boundaries (or between one of them and the 
shear layer). 

The authors wish to thank P.I. Kolykhalov for discussing individual aspects of this paper. 
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NON-LOCAL NON-LINEAR EQUATIONS OF WIND WAVES OVER AN UNEVEN BOTTOM* 

S.YU. DOBROKHOTOV, P.N. ZHEVANDROV and V.M. KUZ'MINA 

The evolution of a two-layer water-air medium under the action of a wind 
is treated in the weak non-linearity approximation. Here, together with 
the effects studied in /l-3/, we present, using an operator method /4, 5/, 
analogies of the Boussinesq equations without any assumption regarding 
the shallowness of the water reservoir and also taking account of the 
actipn of a wind but under the assumption that the amplitudes of the 
corresponding wave processes are small and the average velocity of the 
wind and the bottom of the reservoir are specified functions which vary 
"slowly" with the horizontal coordinates and time. Non-local (pseudo- 
differential) equations are obtained which describe the behaviour of the 
medium being studied taking account of the quadratic and cubic non-linear 
terms. Asymptotic solutions of these equations which take account of weak 
resonance interactions are constructed using the methods in /6, 7/. 
Algorithms are given for deriving the analogous equations and the con- 
struction of their asymptotic solutions when account is taken of an 
arbitrary degree of non-linearity. 
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